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Advances in Understanding Bone Cancer Pain
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Abstract Experimental animal models of bone cancer pain have emerged and findings have provided a unique
glimpse into unraveling the mechanism that drives this debilitating condition. Key contributors to the generation and
maintenance of bone cancer pain are tumor-induced osteolysis, tumor itself, and production of nociceptive mediators in
the bone-tumor microenvironment. J. Cell. Biochem. 96: 682–688, 2005. � 2005 Wiley-Liss, Inc.
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Patients with primary bone sarcomas and
malignant tumors that have metastasized to
bone are frequently confronted with poor qual-
ity of life (QOL). Detractors from life enjoyment
can include skeletal fractures secondary to
osteolysis, hypercalcaemia, neurologic com-
pression, depression, insomnia, and bone can-
cer pain. Bone cancer pain is one of the most
common symptoms presented by patients with
cancer [Coyle et al., 1990; Mercadante, 1997;
Portenoy and Lesage, 1999]. Metastatic breast
and prostate carcinomas are principle contri-
butors to the prevalence of cancer-induced bone
pain. Skeletal complications, as sequelae of
metastatic disease, manifest themselves in
approximately 70% of patients with advanced
breast or prostate carcinoma [Coleman, 1997].
Furthermore, skeletal metastases are discov-
ered in greater than 90% of patients who die
from breast or prostate carcinoma [Coleman,
1997]. With continued progression of malig-
nancy, the degree of bone cancer pain deterio-
rates rapidly from a consistent, stable
background pain to unpredictable pain char-
acterized by episodic, breakthrough events
[Portenoy and Hagen, 1990; Clohisy and
Mantyh, 2003]. Breakthrough pain may be pro-
voked by movement (incident pain) or may be

spontaneous and unrelated to patient mobility
[Portenoy and Lesage, 1999]. Mechanical allo-
dynia is the painful perception of mechanical
stimuli that are not normally perceived as
noxious. Development of this type of pain
punctuates the pathway of bone cancer pain.
This acute form of movement-evoked pain can
be generated by modest limb use, coughing, or
turning in bed and has diminished responsive-
ness to conventional therapeutics.

ANIMAL MODELS OF BONE CANCER PAIN

Experimental models of bone cancer pain
have been developed in mice and rats. These
models study tumors at different anatomic sites
and of varied histological origin. Contemporary
experimental models are based on direct injec-
tion of cancer cells into themedulla of the femur,
humerus, and calcaneus [Honore et al., 2000c;
Cain et al., 2001; Mach et al., 2002; Medhurst
et al., 2002; Wacnik et al., 2003]. Intramedul-
lary injection was first introduced at the end of
the last decade by Schwei et al. [1999] and has
since evolved to incorporate a variety of tumor
types used to observe the progression of bone
cancer pain. For example, bone cancer pain
has been studied using rat breast carcinoma
(MRMT-1), murine fibrosarcoma (2472), mur-
ine breast carcinoma (4T1), hepatocellular
carcinoma (HCa-1), and murine melanoma
(B16).

There are two methods of introducing cancer
cells directly into skeletal medulla. In rats,
because of the large bone size, it is possible to
inject tumor cells percutaneously into the tibia
without performing a knee stifle [Medhurst
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et al., 2002]. With mice, because of diminutive
bone size, tumor cells are injected into the hum-
erus or femur after a surgical knee stifle
[Wacnik et al., 2003; Goblirsch et al., 2004].
Direct, local intramedullary injection of tumor
cells is advantageous over systemic intravenous
or intracardiac administration because the
skeletal site where the tumor develops is
known, allowing for analysis of corresponding
behavioral and neuroanatomic segments.
Furthermore, intramedullary injection permits
simultaneous and precise quantitative evalua-
tion of site-specific pain behaviors, tumor
growth, osteolytic bonedestruction, bone-tumor
microenvironment, and neurochemistry.
Assessment of cancer-induced bone pain in

experimental animal models has been per-
formed, based on behavioral analyses, neuro-
chemical markers of peripheral and central
nervous system pathology, radiographic ima-
ging, and histology. From the behavioral stand-
point, two types of bone cancer pain have been
studied, ongoing pain and movement-evoked
pain. Ongoing pain is measured in murine
models by quantification of spontaneous guard-
ing and flinching, or the duration and fre-
quency, respectively that a mouse holds the
tumor-affected limb aloft during a predeter-
mined observation period. Movement-evoked

bonepain is assessed by limbuse in an openfield
and forced ambulation.

Radiographic andhistologic analyses of osteo-
lytic tumors in experimental models have
consistently demonstrated that mature, multi-
nucleated osteoclasts are stimulated by the
release of tumor cytokines and growth factors.
Upon activation, osteoclasts have been shown
to cause cancer-induced osteolysis in bone
[Clohisy and Ramnaraine, 1998]. Novel experi-
mentalmodels allow osteolytic bone destruction
to be correlated to pain behaviors, neurochem-
ical changes, and cellular reorganization of the
spinal cord [Hukkanen et al., 1992; Honore
et al., 2002; Sevcik et al., 2004].

NEUROCHEMISTRY AND BONE CANCER PAIN

Bone contains a highly concentrated mosaic
of primary sensory afferent and sympathetic
fiber innervation, particularly embedded in the
non-mineralized, connective tissue sheath cov-
ering the external bone surface or periosteum
and in the intramedullary marrow (Fig. 1)
[Bjurholm et al., 1988; Mach et al., 2002].
Distribution of nerve fibers in mineralized,
osseous bone is limited to blood vessels and
Haversian canals [Hukkanen et al., 1992;
Serre et al., 1999]. Cellular and neurochemical

Fig. 1. Distribution of nerve fibers in bone. A: Micro-
computerized tomography scan of the mouse femur subdivided
according to proximal head, diaphysis, and distal head via
presence of intramedullary trabecular bone. B: Schematic
illustration of sensory fiber localization in periosteum, miner-
alized bone, and bone marrow. Sensory fiber concentration per
unit area is greatest in theperiosteumandconcentrated less in the

mineralized bone. The schematic is adapted from Marieb and
Mallat, 1997. Reprinted with permission fromMach DB, Rogers
SD, Sabino MC, Luger NM, Schwei MJ, Pomonis JD, Keyser CP,
Clohisy DR, Adams DJ, O’Leary P, Mantyh PW. Origins of
skeletal pain, sensory, and sympathetic innervation of themouse
femur. Neuroscience. 2002; 113(1):155–166.� 2002 IBRO.
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characteristics of chronic pain can be detected
in the dorsal root ganglia (DRGs) and at the site
of primary sensory afferent innervation of the
spinal cord. Central sensitization can be detec-
ted through evaluation of the neurochemistry
and neural composition of the spinal cord.

Noxious stimulation of peripheral tissues
initiates a cascade of nociceptive signals in the
primary sensory afferent neurons. Pain signals
are transduced from noiceptors in the primary
afferent nerve fibers and transmitted to the
DRGs, which house the nuclei and cellular
bodies of sensory neurons. Lamina I spinal
neurons in the dorsal horn of the spinal cord
innervate the central nervous system and relay
pain signals fromDRGs to terminal processes in
the brain after extensive excitatory or inhibi-
tory processing [Urch, 2004].

Pain, as a sequela of injury or disease, can be
characterized according to neuropeptide pro-
duction in primary sensory afferent neurons
and the spinal cord. Distinct neurochemical
signatures have been suggested to characterize
inflammatory, neuropathic, and tumorigenic
pain. Experimental induction of inflammation
via subdermal injection of complete Freund’s
adjuvant or intraplantar injection of capsaicin
has been shown to upregulate substance P (SP),
calcitonin gene-regulated peptide (CGRP),
nerve growth factor (NGF), and pro-inflamma-
tory cytokines in the primary afferent nerve
fibers of DRGs and in laminae I and II of the
dorsal spinal cord [Kuraishi et al., 1989;
Donnerer et al., 1992; Smith et al., 1993;
Galeazza et al., 1995; Honore et al., 2000b]. In
contrast to pain produced by inflammation,
neuropathic pain induced by peripheral sciatic
transection and constriction or spinal nerve
ligation exhibits downregulation of SP and
CGRP in the primary afferents of the DRG and
the superficial dorsal horn [Fitzgerald et al.,
1985; Villar et al., 1991; Garrison et al., 1993].
Neuropathic pain is also associated with the
upregulation of galanin (GAL) and NPY in the
primary sensory afferents of the DRG and
laminae I and II of the dorsal horn of the spinal
cord [Garrison et al., 1991; Villar et al., 1991;
Zhang et al., 1995a,b].

Tumorigenic pain can be delineated from
inflammatory pain and neuropathy as a distinct
condition based on alterations in the spinal
cord. Cancer-induced bone pain leads to reorga-
nization and sensitization of the central dorsal
horn of the spinal cord. This condition is mani-

fested as increased expression of the pro-
hyperalgesic peptidedynorphin (DYN), enhanced
neuronal activity monitored by elevated c-Fos
expression, and profound astrocytosis [Mantyh
et al., 1995; Honore et al., 2000a,b]. Recent data
indicate that painless stimuli can stimulate
release of SP from primary afferent sensory
neurons of cancerous hind limbs, terminating in
lamina I of the spinal cord [Schwei et al., 1999].
In contrast to inflammatory and neuropathic
diseases, bone cancer pain does not produce
significant expression of SP and CGRPmarkers
in the dorsal horn of the spinal cord or GAL and
NPY in the primary sensory afferent neurons.
Importantly, however, expression of glial fibril-
lary acidic protein (GFAP), an astrocyte-specific
cellular protein found in the supporting glial
cells of the spinal cord, increases markedly in
bone cancer pain (Fig. 2) [Honore et al., 2000b].
The evidence from experimental models, there-
fore, suggests that the neurochemical and
cellular characteristics of bone cancer pain
are unique when compared to inflammatory or
neuropathic pain.

THERAPIES FOR
CANCER-INDUCED BONE PAIN

Approximately 90% of cancer patients experi-
ence bone pain. Of these patients, 54% receive
only temporary pain relief from conventional
therapies [Meuser et al., 2001]. Permanent pain
relief is oftenunobtainable and continues to be a
challenging endeavor. Thedirection of available
therapies are focused on eliminating tumor
proliferation, reducing tumor-induced bone
loss, intervening surgically to stabilize painful
bones infiltrated with skeletal metastases, and
administrating powerful pain medications.
Treatment regimens can include monotherapy
or concurrent combinations of nonsteroidal
anti-inflammatory drugs (NSAIDs), cyclooxy-
genase-2 (COX-2) inhibitors, chemotherapy,
radiotherapy, nitrogen-containing bisphospho-
nates, and opioids. Medical management of
bone cancer pain typically begins with NSAIDs
or COX-2 inhibitors that are aimed at alleviat-
ing inflammatory states associated with bone
pain. The potency of COX-2 inhibitors versus
NSAIDs is similar; however, COX-2 inhibitors
produce fewer gastrointestinal side effects.

Eradication of the tumor is usually approa-
ched with chemotherapy and radiotherapy
management. External beam radiation is one
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the most effective treatments found to alleviate
tumor-induced bone pain, with 90% of patients
receiving some pain relief and 50% of patients
having complete relief. Unfortunately, more
than 50% of patients who undergo radiation
treatment and obtain pain relief will experience
a relapse of pain equivalent to pretreatment
levels [Tong et al., 1982]. The exact mechanism
of radiation-induced pain relief is unknown.
Hoskins et al. has suggested that decreased
activity of osteoclasts in the bone-tumor
microenvironment after radiation treatment is
responsible for decreased bone destruction and
serves as a predicting factor in the decreased

pain response following radiation [Hoskin
et al., 2000]. More recently, Goblirsch et al.
has suggested that reduced tumor burden and
reduced osteolysis are the principal contribu-
tors through which radiation improves cancer-
induced bone pain (Fig. 3) [Goblirsch et al.,
2004].

Administration of bisphosphonates and/or
surgical stabilization address the painful, fragile
condition of bones affected by tumor-induced
bone loss and skeletal metastasis. Bisphospho-
nates, used initially to treat malignancy-

Fig. 3. Murine model of radiation treatment for bone cancer
pain. A schematic representation of the lead-lined mouse
restraining apparatus used to deliver a single, localized dose of
orthovoltage radiation to tumor-bearing femora. The anatomic
area exposed to radiation includes the entire femur (red shading).
All other areas of the anesthetized mouse are protected from
radiation. Lithium fluoride thermoluminescent dosimeters
(TLDs) confirmed the actual radiation doses (x). Reprinted with
permission from Goblirsch M, Mathews W, Lynch C, Alaei P,
Gerbi BJ, Mantyh PW, Clohisy DR. Radiation treatment
decreases bone cancer pain, osteolysis, and tumor size. Radiat
Res. 2004 161:228–234. � 2004 Radiation Research Society.

Fig. 2. Spinal cord astrogliosis as an indicator of bone cancer
pain. Confocal image showing the profound unilateral discre-
pancy of GFAP staining (bright orange) in coronal sections of the
fourth lumbar segment of the spinal cord after intramedullary
injection of osteolytic sarcoma cells into the femur. GFAP
upregulation, a marker of astrocyte hypertrophy, is nearly
exclusive to the ipsilateral spinal cord of the tumor-bearing
femur. Reprinted with permission from Schwei MJ, Honore P,
Rogers SD, Salak-Johnson JL, FinkeMP, RamnaraineML, Clohisy
DR, Mantyh PW. Neurochemical and cellular reorganization of
the spinalcord inamurinemodelofbonecancerpain. JNeurosci.
1999 Dec; 19(24):10886–10897. � 1999 Society for Neu-
roscience.
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associated humoral hypercalcaemia, have
shown promise at decreasing cancer-induced
skeletal complications. The suggested mechan-
ism of bisphosphonates’ action is a direct
inhibition of osteoclast and osteoclast precursor
cell activation [Hiraga et al., 2001; Vasikaran,
2001; Neville-Webbe et al., 2002]. Recent
reports have shown that bisphosphonate treat-
ment can significantly reduce the number of
activated osteoclasts and osteolytic destruction
of bone [Breuil et al., 1998; Boissier et al., 2000].
Furthermore, clinical trials have reported
modest alleviation of bone pain in up to 50%
of patients administered bisphosphonates
[Coleman and Kaplan, 1993; Coleman, 2004].
The nitrogen-containing bisphosphonate, alen-
dronate in particular has been shown to alle-
viate ongoing and movement-evoked pain in a
murine model of femoral cancer [Sevcik et al.,
2004]. The suggestedmechanism for reductions
in pain behavior is a product of bone resorpt-
ion inhibition and mechanical stabilization
[Hukkanen et al., 1992; Mach et al., 2002].
It has also been hypothesized that osteoclast
inhibition causes an increase in bone-tumor
microenvironment pH, resulting in a loss of
sensory channel stimulation [Bassilana et al.,
1997; Olson et al., 1998].

Chronic pain unresponsive to anti inflam-
matory agents, chemotherapy, radiotherapy,
surgery, and/or bisphosphonates is typically
combated with strong pain medications. Opioid
management of advanced bone cancer pain is
common and effective for pain relief. Unfortu-
nately, opioid doses required to attenuate bone
pain (120 mg/kg per day) can produce undesir-
able side effects such as confusion, somnolence,
and constipation, that can severely diminish
overall QOL [Baines, 1989; Lesage and
Portenoy, 1999]. Opioid-treated patients with
advanced bone pain are in a particularly
vulnerable state. Within 4 weeks after seeing
their physician, 73% of terminally ill patients
receiving opioid treatment reported pain that
was moderate to severe, and 40% of those pati-
ents with severe pain requested an increase
in opioid treatment [Coyle et al., 1990]. Since
opioids do not directly target the source of pain
but act systemically via the central nervous
system, the negative repercussions to organ
systems can contribute significantly to poor
QOL.

Significant progress has been made recently
in examining potential new therapies. Recom-

binantosteoprotegerin(OPG-Fc)andotherrece-
ptor activator of nuclear factor-kappaB ligand
(RANKL) blockades inhibit bone resorption.
The link between osteolysis and bone cancer
pain was shown in studies where reduced
ongoing and movement-evoked pain was noted
after OPG-Fc was delivered to block bone
cancer-induced bone pain and osteolysis
[Simonet et al., 1997; Honore and Mantyh,
2000]. Clinical trials are currently underway
using ahuman antibody against RANKL.Other
laboratory research indicates that the transient
receptor potential vanilloid type-1 (TRPV1) ion
channel, endothelin A, and anti-nerve growth
factor (anti-NGF) therapies relieve bone cancer
pain (Fig. 4). It has been shown, using TRPV1
antagonists and TRPV1 knockout mice, that
this acid-sensing ion channel contributes to
bone cancer pain [Ghilardi et al., 2005].
Endothelin A, a receptor antagonist, has been
shown to reduce pain [Peters et al., 2004] and
treatment with anti-NGF antibody has been
shown to reduce bone cancer pain [Sevcik et al.,
2005].

CONCLUSION

Cancer-induced bone pain is a complex pain
condition. Novel initiatives pursuing the etio-
logy and treatment of bone cancer pain are

Fig. 4. Mechanisms of bone cancer pain. Tumor cells (T) act to
cause pain in many ways. Production of prostaglandins (PGE2)
and other molecules by tumors, tumor-associated macrophages
(TAM) and other host cells stimulate osteoclast-mediated bone
resorption. Nociceptors in bone are stimulated via activation of
transient receptor potential vanilloid type-1 (TRPV1), endothelin
A receptor (ETAR), and TrkA receptor. Activation is directed by
acid microenvironment (Hþ), endothelin-1 (ET-1), and nerve
growth factor (NGF), respectively.
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requisite to identify the mechanistic origins of
this debilitating pain condition. Recent work,
using experimental animal models that mimic
patient-like states, have proven valuable by
initiating study of bone cancer pain. From this
research, induction of peripheral and central
sensitization of the nervous system has been
shown to originate from skeletal cancers. Con-
tinued investigations to elucidate molecular
markers andmechanisms through which sensi-
tization occurs will be important. Utilizing
current and emerging animal models to test
the efficacy of emerging therapies will direct
future clinical management of this dreaded
condition.
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